Search Result for "electron tube":
Wordnet 3.0

NOUN (1)

1. electronic device consisting of a system of electrodes arranged in an evacuated glass or metal envelope;
[syn: tube, vacuum tube, thermionic vacuum tube, thermionic tube, electron tube, thermionic valve]


WordNet (r) 3.0 (2006):

electron tube n 1: electronic device consisting of a system of electrodes arranged in an evacuated glass or metal envelope [syn: tube, vacuum tube, thermionic vacuum tube, thermionic tube, electron tube, thermionic valve]
The Free On-line Dictionary of Computing (30 December 2018):

electron tube firebottle vacuum tube (Or tube, vacuum tube, UK: valve, electron valve, thermionic valve, firebottle, glassfet) An electronic component consisting of a space exhausted of gas to such an extent that electrons may move about freely, and two or more electrodes with external connections. Nearly all tubes are of the thermionic type where one electrode, called the cathode, is heated, and electrons are emitted from its surface with a small energy (typically a Volt or less). A second electrode, called the anode (plate) will attract the electrons when it is positive with respect to the cathode, allowing current in one direction but not the other. In types which are used for amplification of signals, additional electrodes, called grids, beam-forming electrodes, focussing electrodes and so on according to their purpose, are introduced between cathode and plate and modify the flow of electrons by electrostatic attraction or (usually) repulsion. A voltage change on a grid can control a substantially greater change in that between cathode and anode. Unlike semiconductors, except perhaps for FETs, the movement of electrons is simply a function of electrostatic field within the active region of the tube, and as a consequence of the very low mass of the electron, the currents can be changed quickly. Moreover, there is no limit to the current density in the space, and the electrodes which do dissapate power are usually metal and can be cooled with forced air, water, or other refrigerants. Today these features cause tubes to be the active device of choice when the signals to be amplified are a power levels of more than about 500 watts. The first electronic digital computers used hundreds of vacuum tubes as their active components which, given the reliability of these devices, meant the computers needed frequent repairs to keep them operating. The chief causes of unreliability are the heater used to heat the cathode and the connector into which the tube was plugged. Vacuum tube manufacturers in the US are nearly a thing of the past, with the exception of the special purpose types used in broadcast and image sensing and displays. Eimac, GE, RCA, and the like would probably refer to specific types such as "Beam Power Tetrode" and the like, and rarely use the generic terms. The cathode ray tube is a special purpose type based on these principles which is used for the visual display in television and computers. X-ray tubes are diodes (two element tubes) used at high voltage; a tungsten anode emits the energetic photons when the energetic electrons hit it. Magnetrons use magnetic fields to constrain the electrons; they provide very simple, high power, ultra-high frequency signals for radar, microwave ovens, and the like. Klystrons amplify signals at high power and microwave frequencies. (1996-02-05)